A triangle has a base of x 1/2 m and a height of x 3/4 m. If the area of te triangle is 16m to the power of 2, what are the base and height of the triangle

Respuesta :

Answer:

The base of triangle is  [tex]\frac{8}{\sqrt{3}} \ m[/tex] and the height of triangle is  [tex]\frac{12}{\sqrt{3}} \ m.[/tex]

Step-by-step explanation:

Given:

A triangle has a base of x 1/2 m and a height of x 3/4 m. If the area of the triangle is 16m to the power of 2.

Now, to find the base and height of the triangle.

The base of triangle = [tex]x\times\frac{1}{2} =\frac{x}{2} \ m.[/tex]

The height of triangle = [tex]x\times \frac{3}{4} =\frac{3x}{4}\ m.[/tex]

The area of triangle = [tex]16\ m^2.[/tex]

Now, we put the formula of area to solve:

[tex]Area=\frac{1}{2} \times base\times height[/tex]

[tex]16=\frac{1}{2} \times \frac{x}{2} \times \frac{3x}{4}[/tex]

[tex]16=\frac{3x^2}{16}[/tex]

Multiplying both sides by 16 we get:

[tex]256=3x^2[/tex]

Dividing both sides by 3 we get:

[tex]\frac{256}{3} =x^2[/tex]

Using square root on both sides we get:

[tex]\frac{16}{\sqrt{3}}=x[/tex]

[tex]x=\frac{16}{\sqrt{3}}[/tex]

Now, by substituting the value of [tex]x[/tex] to get the base and height:

[tex]Base=\frac{x}{2}\\\\Base=\frac{\frac{16}{\sqrt{3}}}{2} \\\\Base=\frac{8}{\sqrt{3}} \ m.[/tex]

So, the base of triangle = [tex]\frac{8}{\sqrt{3}} \ m.[/tex]

[tex]Height=x\times\frac{3}{4} \\\\Height=\frac{16}{\sqrt{3}}\times \frac{3}{4} \\\\Height=\frac{12}{\sqrt{3}} \ m.[/tex]

Thus, the height of triangle =  [tex]\frac{12}{\sqrt{3}} \ m.[/tex]

Therefore, the base of triangle is  [tex]\frac{8}{\sqrt{3}} \ m[/tex] and the height of triangle is  [tex]\frac{12}{\sqrt{3}} \ m.[/tex]