In the coordinate plane, quadrilateral ABCD has vertices with coordinates A(1,−1), B(−5,3), C(−3,6), and D(3,2). ​ ​Part A: Compute the lengths of the sides of quadrilateral ABCD.

Respuesta :

The lengths are AB 2[tex]\sqrt{13}[/tex] cm, BC [tex]\sqrt{13}[/tex] cm, CD 2[tex]\sqrt{13}[/tex] cm and DA [tex]\sqrt{13}[/tex] cm

Step-by-step explanation:

Given,

The vertices of quadrilateral are A(1,-1), B(-5,3), C(-3,6) and D(3,2)

To find the lengths of the sides of ABCD

Formula

The length of two points (x1,y1) and (x2,y2) is [tex]\sqrt{(x1-x2)^{2} +(y1-y2)^{2} }[/tex]

So,

AB ⇒[tex]\sqrt{(1+5)^{2} +(-1-3)^{2} }[/tex] cm = [tex]\sqrt{52}[/tex] cm = 2[tex]\sqrt{13}[/tex] cm

BC ⇒[tex]\sqrt{(-5+3)^{2}+(3-6)^{2} }[/tex] cm = [tex]\sqrt{13}[/tex] cm

CD ⇒[tex]\sqrt{(-3-3)^{2} +(6-2)^{2} }[/tex] cm = [tex]\sqrt{52}[/tex] cm = 2[tex]\sqrt{13}[/tex] cm

DA ⇒[tex]\sqrt{(3-1)^{2}+(2+1)^{2} }[/tex] cm = [tex]\sqrt{13}[/tex] cm