Respuesta :

Step-by-step explanation:

(1)

AX is bisector of [tex] \angle RAT \implies \angle MAN ... (1)[/tex]

[tex] In\: \triangle MIA \: \&\:\triangle NIA\\

\angle AMI \cong \angle ANI ... (each \: 90\degree)\\

\angle MAI \cong \angle NAI ....(from \: 1)\\

AI \cong AI .. (common \:side) \\

\therefore \triangle MIA \: \cong\:\triangle NIA.. \\(By \: AAS \: Postulate \: of \: congruence) \\

\therefore IM = IN[/tex]

(2)

[tex] In \: \square AMIN \\

\angle A = \angle M= \angle N = 90°\\

\therefore \angle I = 90°[/tex]

(Remaining angle of quadrilateral)

[tex] \therefore \square AMIN [/tex] is a rectangle.

[tex] \because IM = IN [/tex]

(adjacent sides of a rectangle)

[tex] \therefore \square AMIN [/tex] is a square.

Hence proved.