The length of a rectangle is twice its width. Find its area, if its perimeter is 7 1/3 cm The area of the rectangle is _sq. cm.

Respuesta :

Answer:

The area of rectangle is [tex]2\frac{80}{81}\ cm^2[/tex]

Step-by-step explanation:

we know that

The perimeter of a rectangle is equal to

[tex]P=2(L+W)[/tex]

we have

[tex]P=7\frac{1}{3}\ cm=7+\frac{1}{3}=\frac{22}{3}\ cm[/tex]

so

[tex]\frac{22}{3}=2(L+W)[/tex]

[tex]\frac{11}{3}=(L+W)[/tex] ----> equation A

Remember that

The length of a rectangle is twice its width.

so

[tex]L=2W[/tex] ----> equation B

substitute equation B in equation A

[tex]\frac{11}{3}=(2W+W)[/tex]

solve for W

[tex]W=\frac{11}{9}\ cm[/tex]

Find the value of L

[tex]L=2(\frac{11}{9})[/tex]

[tex]L=\frac{22}{9}\ cm[/tex]

Find the area of rectangle

[tex]A=LW[/tex]

substitute the values

[tex]A=(\frac{22}{9})(\frac{11}{9})[/tex]

[tex]A=\frac{242}{81}\ cm^2[/tex]

Convert to mixed number

[tex]\frac{242}{81}\ cm^2=\frac{162}{81}+\frac{80}{81}=2\frac{80}{81}\ cm^2[/tex]