Respuesta :

Answer:

For y = 5; –3; 0; 2 ⇒ x = -31/3 ; -17/5 ; 1/2 ; ∅

Step-by-step explanation:

Given:

[tex]y=\frac{2x-1}{x+6}[/tex]

It is required to find the values of x which make y = 5; –3; 0; 2

A) y = 5

[tex]5=\frac{2x-1}{x+6}[/tex]

∴ 5 (x+6) = 2x- 1

5x + 30 = 2x - 1

5x - 2x = -1 - 30

3x = -31 ⇒ x = -31/3

B) y = -3

[tex]-3=\frac{2x-1}{x+6}[/tex]

-3(x+6) = 2x-1

-3x - 18 = 2x - 1

-5x = 17  ⇒ x = -17/5

C) y = 0

[tex]0=\frac{2x-1}{x+6}[/tex]

2x - 1 = 0

2x = 1 ⇒ x = 1/2

D) y = 2

[tex]2=\frac{2x-1}{x+6}[/tex]

∴ 2 (x+6) = 2x- 1

2x + 12 = 2x - 1

∴ 12 = -1 ⇒ no solution ⇒ ∅

Which mean there is no value of x to make y = 2

Because the domain of the given function = R - {-6}

And the range will be R - {2}

So for y = 5; –3; 0; 2 ⇒ x = -31/3 ; -17/5 ; 1/2 ; ∅