Answer:
Barbara's speed in clear weather is [tex]60mph[/tex] and in the thunderstorm is [tex]38mph[/tex].
Step-by-step explanation:
Let [tex]v_1[/tex] be the speed and [tex]t_1[/tex] be the time Barbara drives in clear weather, and let [tex]v_2[/tex] be the speed and [tex]t_2[/tex] be the time she drives in the thunderstorm.
Barbara drives 22 mph lower in the thunderstorm than in the clear weather; therefore,
(1). [tex]v_2 = v_1 -22[/tex]
Also,
(2). [tex]v_1t_1 = 45miles[/tex]
(3). [tex]v_2 t_2 = 57[/tex],
and
(4). [tex]t_1+t_2 = 2.25hr[/tex]
From equations (2) and (3) we get:
[tex]t_1 = \dfrac{45}{v_1}[/tex]
[tex]t_2 =\dfrac{57}{v_2}[/tex]
putting these in equation (4) we get:
[tex]\dfrac{45}{v_1}+\dfrac{57}{v_2}=2.25[/tex]
and substituting for [tex]v_2[/tex] from equation (1) we get:
[tex]\dfrac{45}{v_1}+\dfrac{57}{v_1-22}=2.25[/tex]
This equation can be rewritten as
[tex]2.25v_1^2-151.5v_1+990=0[/tex]
which has solutions
[tex]v_1 = 60[/tex]
[tex]v_1 = 7.33[/tex]
We take the first solution [tex]v_1 =60[/tex] because it gives a positive value for [tex]v_2:[/tex]
[tex]v_2 = v_1 -22[/tex]
[tex]v_2 = 60 -22\\[/tex]
[tex]v_2 = 38[/tex].
Thus, Barbara's speed in clear weather is [tex]60mph[/tex] and in the thunderstorm is [tex]38mph[/tex].