Answer:
Option b. (x = 3, y = 20, z = -14)
Step-by-step explanation:
Given:
2x + 2y + 3z = 4
5x + 3y + 5z = 5
3x + 4y + 6z = 5
Solve using Cramer’s rule
∴ [tex]\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] =\left[\begin{array}{ccc}4\\5\\5\end{array}\right][/tex]
∴A = [tex]\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] = -1[/tex]
Ax = [tex]\left[\begin{array}{ccc}4&2&3\\5&3&5\\5&4&6\end{array}\right] = -3[/tex]
Ay = [tex]\left[\begin{array}{ccc}2&4&3\\5&5&5\\3&5&6\end{array}\right] =-20\\[/tex]
Az = [tex]\left[\begin{array}{ccc}2&2&4\\5&3&5\\3&4&5\end{array}\right] = 14[/tex]
∴ x = Ax/A = -3/-1 = 3
y = Ay/A = -20/-1 = 20
z = Az/A = 14/-1 = -14
So, the answer is option b. (x = 3, y = 20, z = -14)