Solve the system of equations.
2x + 2y + 3z = 4
5x + 3y + 5z =
3x + 4y + 6z = 5
a. (x = 2, y = 21, z = -13)
b. (x = 3, y = 20,2 = -14)
c. (x = 5, y = 18, z =-12)
d. (x = 4, y = 19,2 =-15)

Respuesta :

Answer:

Option b. (x = 3, y = 20, z = -14)

Step-by-step explanation:

Given:

2x + 2y + 3z = 4

5x + 3y + 5z = 5

3x + 4y + 6z = 5

Solve using Cramer’s rule

∴ [tex]\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] =\left[\begin{array}{ccc}4\\5\\5\end{array}\right][/tex]

∴A = [tex]\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] = -1[/tex]

Ax = [tex]\left[\begin{array}{ccc}4&2&3\\5&3&5\\5&4&6\end{array}\right] = -3[/tex]

Ay = [tex]\left[\begin{array}{ccc}2&4&3\\5&5&5\\3&5&6\end{array}\right] =-20\\[/tex]

Az = [tex]\left[\begin{array}{ccc}2&2&4\\5&3&5\\3&4&5\end{array}\right] = 14[/tex]

∴ x = Ax/A = -3/-1 = 3

   y = Ay/A = -20/-1 = 20

   z = Az/A = 14/-1 = -14

So, the answer is option b. (x = 3, y = 20, z = -14)