Respuesta :
Answer:
The magnitude of the electric field equal to 2.40 N/C at 1.1537m from the wire.
Explanation:
using Guass law,
(guessing that a cylinder of radius r and length L around wire such that wire is at centre )
E. A = qin / e0
E ( 2πr L ) = (1.56 x [tex]10^{-10}[/tex] x L) / (8.85 x [tex]10^{-12}[/tex])
E = (1.56 x [tex]10^{-10}[/tex] ) / (2πr x 8.85 x [tex]10^{-12}[/tex])
so 2.40 = (1.54 x [tex]10^{-10}[/tex] ) / (2πr x 8.85 x [tex]10^{-12}[/tex])
2.40 (6.284r) = 0.174 x 10²
15.0816r = 17.4
r = 1.1537m
The distance will be "1.1537 m".
Given:
- Electric field = [tex]2.40 \ N/C[/tex]
- Charge = [tex]1.56\times 10^{-10} \ C/m[/tex]
By using the Gauss law, we get
→ [tex]E.A = \frac{q_{in}}{e_0}[/tex]
or,
→ [tex]E(2 \pi r L) = \frac{1.56\times 10^{-10}\times L}{8.85\times 10^{-12}}[/tex]
[tex]E = \frac{1.56\times 10^{-10}}{2 \pi r\times 8.85\times 10^{-12}}[/tex]
[tex]2.40 = \frac{1.54\times 10^{-10}}{2 \pi r\times 8.85\times 10^{-12}}[/tex]
[tex]2.40\times 6.284 r= 0.174\times 10^2[/tex]
[tex]15.0816 r = 17.4[/tex]
[tex]r = \frac{17.4}{15.0816 }[/tex]
[tex]= 1.1537 \ m[/tex]
Thus the above approach is right.
Learn more about electric field here:
https://brainly.com/question/14741400
