Which expression is equivalent to ?





Answer:
Step-by-step explanation:
[tex]\frac{(a^{2}b^{4}c)^{2}*(6a^{3}b)*(2c^{5})^{3}}{4a^{6}b^{12}c{^3}}\\\\=\frac{a^{2*2}b^{4*2}c^{2}6a^{3}b2^{3}c^{5*3}}{4a^{6}b^{12}c{^3}}\\\\=\frac{a^{4}b^{8}c^{2}6a^{3}b8c^{15}}{4a^{6}b^{12}c{^3}}\\\\=\frac{6*8*a^{4+3}b^{8+1}c^{2+15}}{4a^{6}b^{12}c{^3}}\\\\=\frac{6*2*a^{7}b^{9}c^{17}}{a^{6}b^{12}c{^3}}\\\\=\frac{12a^{7-6}c{17-3}}{b^{12-9}}\\\\=\frac{12a^{1}c^{14}}{b^{3}}\\\\=\frac{12ac^{14}}{b^{3}}[/tex]
Hint:
[tex]x^{m}*x^{n}=x^{m+n}\\\frac{x^{m}}{x^{n}}=x^{m-n},m>n\\\frac{x^{m}}{x^{n}}=\frac{1}{x^{n-m}},n>m[/tex]