Respuesta :

Answer:

[tex]\frac{dy}{dt}[/tex] = - 4 cm/s

Step-by-step explanation:

Let us revise the chain rule

If [tex]\frac{dy}{dt}[/tex] = a and [tex]\frac{dx}{dt}[/tex] = b, then

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{dy}{dt}[/tex] ÷  [tex]\frac{dx}{dt}[/tex] = [tex]\frac{a}{b}[/tex]

∵ y = x² + 1

- Use the differentiation to find [tex]\frac{dy}{dx}[/tex]

∴ [tex]\frac{dy}{dx}[/tex] = 2x

∵ x = -1

- Substitute x by -1 in  [tex]\frac{dy}{dx}[/tex]

∴  [tex]\frac{dy}{dx}[/tex] = 2(-1)

∴  [tex]\frac{dy}{dx}[/tex] = -2

∵  [tex]\frac{dy}{dt}[/tex] =  [tex]\frac{dy}{dx}[/tex] ×  [tex]\frac{dx}{dt}[/tex]

∵ [tex]\frac{dx}{dt}[/tex] = 2 cm/s

∴  [tex]\frac{dy}{dt}[/tex] = (-2) × (2)

[tex]\frac{dy}{dt}[/tex] = - 4 cm/s