Respuesta :

Answer:

x=24, y=4

Step-by-step explanation:

x=6y

1/x+1/y=7/24,

1/6y+1/y=7/24

1/6y+6/6y=7/24

(1+6)/6y=7/24

7/6y=7/24, then

6y=24

y=24/6

y=4

x=6y=6*4=24

Answer:

The numbers are 4 and 24

Step-by-step explanation:

Let the first number be [tex]x[/tex] and the second number be [tex]y[/tex].

since we were told that one number is 6 times another , let

x = 6y .................................. equation 1

The reciprocal of [tex]x = \frac{1}{x}[/tex]

The reciprocal of [tex]y = \frac{1}{y}[/tex]

The sum of the reciprocal will therefore be :

[tex]\frac{1}{x}+\frac{1}{y}=\frac{7}{24}[/tex] ................................... equation 2

substitute [tex]x = 6y[/tex] into equation 2 , equation 2 then becomes :

[tex]\frac{1}{6y}+\frac{1}{y}=\frac{7}{24}[/tex]

The L.CM is 6y ,

then we have [tex]\frac{1+6}{6y}=\frac{7}{24}[/tex]

[tex]\frac{7}{6y}=\frac{7}{24}[/tex]

since they have the same numerator , we will equate the denominator , that is

[tex]6y = 24[/tex]

divide through by 6

[tex]y = 4[/tex]

substitute [tex]y = 4[/tex] into equation 1 to find the value of x , that is

[tex]x = 6(4)[/tex]

[tex]x = 24[/tex]

Therefore : The numbers are 4 and 24

Check:

[tex]x = 6y[/tex]

[tex]24 = 6(4) = 24[/tex]

[tex]\frac{1}{x}+\frac{1}{y}=\frac{7}{24}[/tex]

[tex]\frac{1}{24}+\frac{1}{4}[/tex]

L.C.M = 24

so we have

[tex]\frac{1+6}{24}[/tex]

= [tex]\frac{7}{24}[/tex]