contestada

The product of two consecutive negative integers is 506. Write and solve an equation to
determine the two numbers?

Respuesta :

Answer:

-22, -23 are two consecutive negative numbers  whose product is 506

Step-by-step explanation:

Let x, x+1 are two consecutive negative numbers

According to given Condition

[tex](x)(x+1) = 506[/tex]

[tex]x^{2} +x = 506[/tex]

[tex]x^{2} +x - 506=0[/tex]

[tex]x^{2} +22x -23x- 506=0[/tex]

[tex](x^{2} +22x) -(23x+ 506)=0[/tex]

[tex]x(x +22) -23(x+ 22)=0[/tex]

[tex](x +22) (x-23)=0[/tex]

[tex]x+22 =0[/tex]     or     [tex]x-23=0[/tex]

[tex]x=-22[/tex]        or     [tex]x=23[/tex]

As Number is negative so x = -22

x+1 = -23

-22, -23 are two consecutive negative numbers  whose product is 506

 

 

 

 

 

 

21 and 22 are two consecutive numbers whose squares, when subtracted, equals 43.