mluz62
contestada

The parent function of the function represented in the table is
quadratic, linear ,exponential
If function f was translated down 4 units, the
f(x),x, x- and f(x)
-values would be
multiplied by 4 , increased by 4 ,decreased by 4 , divided by 4
A point in the table for the transformed function would be
(4,87) ,(3,29) ,(2,23) ,(1,52)

The parent function of the function represented in the table is quadratic linear exponential If function f was translated down 4 units the fxx x and fx values w class=

Respuesta :

frika

Answer:

[tex]y=3^x+10[/tex]

f(x)-values

decreased by 4

(4,87)

Step-by-step explanation:

The table shows the exponential growth function

[tex]y=a\cdot b^x +c[/tex]

substitute some values to find [tex]a,b,c:[/tex]

[tex]13=a\cdot b^1+c\\ \\19=a\cdot b^2 +c\\ \\37=a\cdot b^3+c[/tex]

Subtract these equations:

[tex]ab^2+c-ab-c=19-13\Rightarrow ab(b-1)=6\\ \\ab^3+c-ab^2-c=37-19\Rightarrow ab^2(b-1)=18[/tex]

Divide them:

[tex]\dfrac{ab^2(b-1)}{ab(b-1)}=\dfrac{18}{6}\Rightarrow b=3[/tex]

Then

[tex]3a(3-1)=6\Rightarrow a=1[/tex]

Hence,

[tex]13=1\cdot 3+c\Rightarrow c=10[/tex]

Therefore, the parent function is [tex]y=3^x+10[/tex]

If this function would be translated 4 units down, its expression will be

[tex]y=3^x+10-4\\ \\y=3^x+6[/tex]

This means that f(x)-values decreased by 4.

Then the table for translated function is

[tex]\begin{array}{cccccc}x&1&2&3&4&5\\ \\f(x)&9&15&33&87&249\end{array}[/tex]

The graph of translated function passes through the point (4,87)

Ver imagen frika

Answer:

1. Exponential

2. F(x)

3. Decreased by 4

4. (4,87)

Step-by-step explanation: