Respuesta :
Answer:
The Proof for
△ABD ≅ △CBD is below
Step-by-step explanation:
Given:
[tex]\overline{AC} \perp \overline{BD}[/tex]
[tex]\overline{BD} \ bisects\ \overline{AC}[/tex]
AD = CD .........BD bisect AC
To Prove:
△ABD ≅ △CBD
Proof:
In ΔABD and ΔCBD
BD ≅ BD ....……….{Reflexive Property}
∠ADB ≅ ∠CDB …………..{Measure of each angle is 90°( [tex]\overline{AC} \perp \overline{BD}[/tex] )}
AD ≅ CD ....……….{ [tex]\overline{BD} \ bisects\ \overline{AC}[/tex] }
ΔABD ≅ ΔCBD .......….{By Side-Angle-Side Congruence test} ...Proved

Answer:
By SAS (Side-Angle-Side) concurrency rule.
[tex]\triangle ABD \cong \triangle CBD[/tex]
Step-by-step explanation:
Given:
[tex]\overline{AC} \perp \overline{BD}[/tex] and [tex]\overline{BD}\;\rm{ bisects}\; \overline{AC}[/tex]
To prove:
[tex]\bold{\triangle ABD \cong \triangle CBD}[/tex]
Solve,
In ΔABD and ΔCBD
BD = BD [BD is common side for both the triangles]
∠ADB = ∠CDB [[tex]\overline{AC} \perp \overline{BD}[/tex], therefore the value of both the angles are of 90 degrees]
AD = CD [[tex]\overline{BD}\;\rm{ bisects}\; \overline{AC}[/tex]]
Therefore,
By SAS (Side-Angle-Side) concurrency rule.
[tex]\triangle ABD \cong \triangle CBD[/tex]
For more information, please refer to the link:
https://brainly.com/question/7700137?referrer=searchResults
