Respuesta :

Answer:

251.57 square millimeters

Step-by-step explanation:

we know that

A regular 24-gon can be divided into 24 congruent isosceles triangle

so

The area of a regular 24-gon is the same that the area of 24 congruent isosceles triangle

To find out the area of one isosceles triangle, apply the law of sines

[tex]A=\frac{1}{2}(r^2)sin(\theta)[/tex]

where

[tex]r=9\ mm[/tex]

[tex]\theta=\frac{360^o}{24}=15^o[/tex]

substitute

[tex]A=\frac{1}{2}(9^2)sin(15^o)=10.48\ mm^2[/tex]

Multiply by 24 to obtain the area of regular 24-gon

[tex]10.48(24)=251.57\ mm^2[/tex]