Respuesta :

Answer:

The two numbers are [tex]3-\sqrt{14}[/tex] and [tex]3+\sqrt{14}[/tex].

Step-by-step explanation:

I am assuming you meant "numbers", otherwise you question has no answer.

Let us call the two numbers [tex]a[/tex] and [tex]b[/tex], then we have

(1). [tex]ab =-5[/tex]  (they multiply to -5)

(2). [tex]a+b =6[/tex] (they add to 6}

We solve for  [tex]a[/tex] and [tex]b[/tex], by first solving for [tex]a[/tex] in equation (1):

[tex]a = -\dfrac{5}{b}[/tex]

and substituting this value into equation (2):

[tex]-\dfrac{5}{b}+ b =6[/tex]

multiply both sides by [tex]b[/tex] and rearrange to get:

[tex]-5+b^2 =6b[/tex]

[tex]b^2-6b-5=0[/tex]

Using the quadratic formula we solve for [tex]b[/tex] to get:

[tex]b = 3+ \sqrt{14}[/tex]

[tex]b =3-\sqrt{14}[/tex]

which when put into equation (1) give

[tex]a = 3-\sqrt{14}[/tex]

[tex]a = 3+\sqrt{14}[/tex].

Thus, the two numbers are [tex]3-\sqrt{14}[/tex] and [tex]3+\sqrt{14}[/tex].