Answer:
See explanation
Step-by-step explanation:
We want to verify that:
[tex] \cot(x) \: { \sec}^{4} x = \cot(x) + 2 \tan(x) + { \tan}^{3} x[/tex]
Verifying from left, we have
[tex]\cot(x) \: { \sec}^{4} x = \cot(x) \: ( 1 + { \tan}^{2} x )^{2} [/tex]
Expand the perfect square in the right:
[tex]\cot(x) \: { \sec}^{4} x = \cot(x) \: ( 1 + { 2\tan}^{2} x + { \tan}^{4} x)[/tex]
We expand to get:
[tex]\cot(x) \: { \sec}^{4} x = \cot(x) \: + \cot(x){ 2\tan}^{2} x +\cot(x) { \tan}^{4} x[/tex]
We simplify to get:
[tex]\cot(x) \: { \sec}^{4} x = \cot(x) \: + 2 \frac{ \cos(x) }{\sin(x) ) } \times \frac{{ \sin}^{2} x}{{ \cos}^{2} x} +\frac{ \cos(x) }{\sin(x) ) } \times \frac{{ \sin}^{4} x}{{ \cos}^{4} x} [/tex]
Cancel common factors:
[tex]\cot(x) \: { \sec}^{4} x = \cot(x) \: + 2 \frac{{ \sin}x}{{ \cos}x} +\frac{{ \sin}^{3} x}{{ \cos}^{3} x} [/tex]
This finally gives:
[tex] \cot(x) \: { \sec}^{4} x = \cot(x) + 2 \tan(x) + { \tan}^{3} x[/tex]