Answer: P(4) = 0.097
[tex]\bold{\sum_{m=1}^9=1}[/tex]
Step-by-step explanation:
[tex]P(m)=\log(m+1)-\log(m)\\\\.\qquad =\log\bigg(\dfrac{m+1}{m}\bigg)\qquad \text{(using rules for condensing logs)}\\\\\\P(4)=\log\bigg(\dfrac{4+1}{4}\bigg)\\\\\\.\qquad =\log\bigg(\dfrac{5}{4}\bigg)\\\\\\.\qquad =\large\boxed{0.097}[/tex]
[tex]\sum_{m=1}^9\log\bigg(\dfrac{m+1}{m}\bigg)\\\\\\.\qquad =\log\bigg(\dfrac{2}{1}\bigg)+\log\bigg(\dfrac{3}{2}\bigg)+...\log\bigg(\dfrac{9}{8}\bigg)+\log\bigg(\dfrac{10}{9}\bigg)\\\\\\.\qquad =\log\bigg(\dfrac{2}{1}\bigg)\bigg(\dfrac{3}{2}\bigg)...\bigg(\dfrac{9}{8}\bigg)\bigg(\dfrac{10}{9}\bigg)\qquad \text{(using rules for condensing logs)}\\\\\\.\qquad =\log\bigg(\dfrac{10!}{9!}\bigg)\\\\\\.\qquad =\log(10)\\\\\\.\qquad =\large\boxed{1}[/tex]