In right triangle LMN, L and M are complementary angles and sin(L) is 19/20. What is cos(M).
A. 19/20
B. [tex]\frac{\sqrt{39} }{20}[/tex]
C. 1/20
D.[tex]\frac{\sqrt{39} }{19}[/tex]

Respuesta :

Option A:

[tex]$\cos M=\frac{19}{20}[/tex]

Solution:

The image of the triangle is attached below.

Given data:

[tex]$\sin L=\frac{19}{20}[/tex]

Using trigonometric ratio formulas,

[tex]$\sin L=\frac{\text { Opposite side of } L}{\text { Hypotenuse }}[/tex]

[tex]$\sin L=\frac{MN}{LM}[/tex]

So, MN = 19 and LM = 20

Using Pythagoras theorem,

In right triangle, square of the hypotenuse is equal to the sum of the squares of the other two sides.

[tex]LM^2=LN^2+MN^2[/tex]

[tex]20^2=LN^2+19^2[/tex]

[tex]400=LN^2+361[/tex]

Subtract 361 from both sides,

39 = LN²

Taking square root on both sides,

[tex]LN=\sqrt{39}[/tex]

[tex]$\cos \theta=\frac{\text { Adjacent side of } \theta}{\text { Hypotenuse }}[/tex]

[tex]$\cos M=\frac{\text { Adjacent side of } M}{\text { Hypotenuse }}[/tex]

[tex]$\cos M=\frac{MN}{LM}[/tex]

[tex]$\cos M=\frac{19}{20}[/tex]

Hence option A is the correct answer.

Ver imagen shilpa85475

Answer:

Hey! I just took the test and the correct answer is indeed option A

Step-by-step explanation:

A. [tex]\frac{19}{20}[/tex]