What value of x makes the expression equivalent to 12 square root of 33?

Answer:
B
Step-by-step explanation:
Consider the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇒ [tex]\sqrt{ab}[/tex]
Given
4[tex]\sqrt{33x}[/tex] ← substitute x = 9
= 4[tex]\sqrt{33(9)}[/tex]
= 4( [tex]\sqrt{33}[/tex] × [tex]\sqrt{9}[/tex])
= 4([tex]\sqrt{33}[/tex] × 3)
= 12[tex]\sqrt{33}[/tex]
Thus the value of x is 9
Answer:
x=9 option B)
Step-by-step explanation:
12×V(33)=4×V(33x)=4×V(33)×V(x)
Where V(33) is short for sqrt(33).
After symplifying with V(33) we get:
12=4×V(x)
V(x)=3
x=9