Consider the function f(x)=sin(x+3π4)+sin(x−3π4) over the interval [0,2π). Simplify the formula of this function and find its minimum value on this interval.

Respuesta :

Answer:

[tex]f(x)=-\sqrt{2}sinx[/tex]

[tex]f_{min}=-\sqrt{2}[/tex]

Step-by-step explanation:

Trigonometric Formulas

One of the basic formulas for the trigonometric functions is the sine of a sum of angles:

[tex]sin(x+y)=sinx\cdot cosy+cosx\cdot siny[/tex]

we are required to simplify the formula

[tex]f(x)=sin(x+3\pi /4)+sin(x-3\pi/ 4)[/tex]

Note we have completed the expression to have more sense

Applying the previous formula twice

[tex]f(x)=sin(x+3\pi /4)+sin(x-3\pi/ 4)[/tex]

[tex]f(x)= sinx\cdot cos3\pi / 4+cosx\cdot sin3\pi/ 4+sinx\cdot cos3\pi/ 4-cosx\cdot sin3\pi / 4[/tex]

Simplifying

[tex]f(x)=2sinx\cdot cos 3\pi /4=-\sqrt{2}sinx[/tex]

[tex]f(x)=-\sqrt{2}sinx[/tex]

The minimum value occurs when the sine is at maximum value, i.e. when sinx=1

[tex]\boxed{f_{min}=-\sqrt{2}}[/tex]

After simplification, We get [tex]f(x)=-\sqrt{2}*sinx[/tex] and minimum value of function is [tex]-\sqrt{2}[/tex]

Trigonometric function :

The given function is,

                    [tex]f(x)=sin(x+\frac{3\pi}{4} )+sin(x-\frac{3\pi}{4} )[/tex]

We know that,

        [tex]sin(A+B)=sin(A)*cos(B)+cos(A)*sin(B)[/tex]

By using above formula. given function can be written as,

   [tex]f(x)=sinx*cos\frac{3\pi}{4}+ sinx*cos\frac{3\pi}{4}\\\\f(x)=2sinx*cos\frac{3\pi}{4} \\\\f(x)=-\sqrt{2} *sinx[/tex]

To find minimum value of above function substitute [tex]sinx=1[/tex]

Minimum value of [tex]f(x)=-\sqrt{2}[/tex]

Learn more about the trigonometric function here:

https://brainly.com/question/14421002