Answer:
10.66mm
Explanation:
Given that the elongation is [tex]\bigtriangleup l=0.11mm[/tex] and Length,[tex]l=63mm[/tex] and Tensile Strength,[tex]F=53500[/tex], The longitudinal stress can be calculated as:
[tex]\epsilon=\frac{\bigtriangleup l}{l}=0.11/63=1.746\times10^-^3[/tex]
The value of strain-stress,[tex]\sigma=150MPa[/tex] corresponding to [tex]1.746\times10^-^3[/tex]'
[tex]\sigma=\frac{F}{A_o}\\150=\frac{53500}{\pi r_o^2}\\\\r_o=10.66mm[/tex]
Hence, the radius of the specimen is 10.66mm