Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the specified axis. y = x3, y = 8, x = 0; about x = 5

Respuesta :

Answer:

V ≅ 8980 vu

Step-by-step explanation:

According to the method of cylindrical shells  V=πR²h, where R² (f(x)₂-f(x)₁),  h=dx, f(x)₂=8 and f(x)₁=x³, then

V=π(8-x³)²h ⇒ dV=π(64-16x³+x⁶)dx integrating on both sides

∫dV = π∫(64-16x³+x⁶)dx = 64∫dx-16∫x³dx+∫x⁶dx ⇒

[tex]V=\pi (64x-4x^{4}+\frac{x^{7}}{7})[/tex]

[tex]V=\pi (64*5-4*5^{4}+\frac{5^{7} }{7})=\pi(320-2500+\frac{78125}{7})\\ V=\frac{\pi }{7}(2240-17500+78125)[/tex]

V ≅ 8980 vu

; evaluated to 0 ≤ x ≤ 5

Ver imagen prozehus
Ver imagen prozehus