. An 8-ton truck is initially going up a 20° ramp with a speed of 90 km/hr. The truck, then, brakes reaching a speed of 36 km/hr after 3 seconds. Assuming constant deceleration determine (a) the magnitude of the braking force, (b) the additional time required for the truck to stop. Neglect air resistance and rolling resistance.

Respuesta :

Answer:

a) [tex]F = 13166.468\,N[/tex], b) [tex]t = 2\,s.[/tex]

Explanation:

a) The equations of equilibrium for the truck are: (x' is the axis parallel to ramp, y' is the axis perpendicular to ramp)

During braking:

[tex]\Sigma F_{x'} = - m\cdot g \cdot \sin \theta - F = m\cdot a[/tex]

[tex]\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0[/tex]

The deceleration experimented by the truck is:

[tex]a=\frac{(36\,\frac{km}{h} )\cdot (\frac{1000\,m}{1\,km} )\cdot (\frac{1\,h}{3600\,s} )-(90\,\frac{km}{h} )\cdot (\frac{1000\,m}{1\,km} )\cdot (\frac{1\,h}{3600\,s} )}{3\,s}[/tex]

[tex]a = -5\,\frac{m}{s^{2}}[/tex]

The braking force is:

[tex]F= - m\cdot (g\cdot \sin \theta+a)[/tex]

[tex]F = -(8000\,kg)\cdot [(9.807\,\frac{m}{s^{2}} )\cdot \sin 20^{\textdegree}-5\,\frac{m}{s^{2}} ][/tex]

[tex]F = 13166.468\,N[/tex]

b) The additional time required for the truck to stop is:

[tex]t = \frac{0\,\frac{m}{s}-(36\,\frac{km}{h} )\cdot(\frac{1000\,m}{1\,km} )\cdot (\frac{1\,h}{3600\,s} ) }{-5\,\frac{m}{s^{2}} }[/tex]

[tex]t = 2\,s.[/tex]