A lighthouse is located on a small island 5 km away from the nearest point P on a straight shoreline and its light makes nine revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P?

Respuesta :

Answer:

Step-by-step explanation:

Given

Light makes [tex]N=9\ rpm[/tex]

Light makes [tex]\frac{\mathrm{d} \theta }{\mathrm{d} t}=\dfrac{2\pi N}{60}=0.3\pi rad/s[/tex]

From figure

[tex]\tan \theta =\dfrac{x}{5}[/tex]

differentiate w.r.t time we get

[tex]\sec ^2\theta\times \frac{\mathrm{d} \theta }{\mathrm{d} t}=\dfrac{1}{5}\times \frac{\mathrm{d} x}{\mathrm{d} t}[/tex]

[tex]at\ x=1[/tex] [tex]\sec \theta =\dfrac{26}{25}[/tex]

[tex]\dfrac{26}{25}\times (0.3\pi )=\dfrac{1}{5}\times \frac{\mathrm{d} x}{\mathrm{d} t}[/tex]

[tex]\frac{\mathrm{d} x}{\mathrm{d} t}=4.90\ km/s\approx 294\ km/min[/tex]

Ver imagen nuuk