Respuesta :

The equation of the line parallel to 8x – 16y = –14 and passes through (3, 0) is [tex]y=\frac{1}{2}x-\frac{3}{2}[/tex].

Solution:

Parallel line:

8x – 16y = –14

Subtract 8x on both sides,

–16y = –8x – 14

Divide by –16 on both sides, we get

[tex]$y=\frac{8}{16}x+\frac{14}{16}[/tex]

[tex]$m_1=\frac{8}{16}[/tex]

Slope of this line is [tex]\frac{8}{16}[/tex].

Slopes of the parallel lines are equal.

[tex]m_1=m_2[/tex]

[tex]$m_2=\frac{8}{16}[/tex]

The line passes through the point (3, 0).

[tex]x_1=3, y_1=0[/tex]

Point-slope formula:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]$y-0=\frac{8}{16} (x-3)[/tex]

[tex]$y=\frac{8}{16}x-\frac{24}{16}[/tex]

[tex]$y=\frac{1}{2}x-\frac{3}{2}[/tex]

The equation of the line parallel to 8x – 16y = –14 and passes through (3, 0) is [tex]y=\frac{1}{2}x-\frac{3}{2}[/tex].