Answer:
70.07 Hz
Explanation:
Since the sound is moving away from the observer then
[tex]f_o = f_s\frac {(v+vs)}{v}[/tex] and [tex]f_o = f_s\frac {(v-vs)}{v}[/tex] when moving towards observer
With [tex]f_o[/tex] of 76 then taking speed in air as 343 m/s we have
[tex]76 = f_s\times\frac {(343-vs)}{343}[/tex]
[tex]f_s=\frac {343\times 76}{343-v_s}[/tex]
Similarly, with [tex]f_o[/tex] of 65 we have
[tex]65 = f_s\times\frac {(343+vs)}{343}\\f_s=\frac {343\times 65}{343+v_s}[/tex]
Now
[tex]f_s=\frac {343\times 65}{343+v_s}=\frac {343\times 76}{343-v_s}[/tex]
v_s=27.76 m/s
Substituting the above into any of the first two equations then we obtain
[tex]f_s=70.07 Hz[/tex]