Respuesta :

Option C

[tex]x = \frac{32}{9}[/tex]

Solution:

[tex]x - \frac{1}{2} \times (8 - x) = x + 3(4 - x) - x[/tex]

We have to solve for "x"

From given,

[tex]x - \frac{1}{2} \times (8 - x) = x + 3(4 - x) - x[/tex]

Solve for brackets

Use distributive property

a(b + c) = ab + ac

Therefore,

[tex]x - 4 + \frac{x}{2} = x + 12 - 3x - x[/tex]

Combine the constants

[tex]x + \frac{x}{2} = x - x - 3x + 12 + 4\\\\x + \frac{x}{2} = -3x + 16[/tex]

Move the variables to left side of equation

[tex]x + \frac{x}{2} + 3x = 16[/tex]

Combine the like terms

[tex]2x + x + 6x = 32\\\\9x = 32\\\\x = \frac{32}{9}[/tex]

Thus option C is correct