Option C
[tex]x = \frac{32}{9}[/tex]
Solution:
[tex]x - \frac{1}{2} \times (8 - x) = x + 3(4 - x) - x[/tex]
We have to solve for "x"
From given,
[tex]x - \frac{1}{2} \times (8 - x) = x + 3(4 - x) - x[/tex]
Solve for brackets
Use distributive property
a(b + c) = ab + ac
Therefore,
[tex]x - 4 + \frac{x}{2} = x + 12 - 3x - x[/tex]
Combine the constants
[tex]x + \frac{x}{2} = x - x - 3x + 12 + 4\\\\x + \frac{x}{2} = -3x + 16[/tex]
Move the variables to left side of equation
[tex]x + \frac{x}{2} + 3x = 16[/tex]
Combine the like terms
[tex]2x + x + 6x = 32\\\\9x = 32\\\\x = \frac{32}{9}[/tex]
Thus option C is correct