Given the functions,f(x)= 3x - 2 and g(x) =
[tex] \frac{x + 2}{3?} [/tex]
, complete parts 1 and 2.
1. Find f(g(x)) and g(f(x)). Include your work in your final answer.
2. Use complete sentences to explain the relationship that exists between the composition of the functions, f(g(x))
andg(f(x)).​

Respuesta :

Answer:

1) f(g(x))=x

g(f(x))=x

2) f(x) and g(x) are inverses of each other.

Step-by-step explanation:

The given functions are :

[tex]f(x) = 3x - 2[/tex]

and

[tex]g(x) = \frac{x + 2}{3} [/tex]

1) We want to find:

[tex]f(g(x)) \: and \: g(f(x))[/tex]

This implies that:

[tex]f(g(x)) = f( \frac{x + 2}{3})[/tex]

We substitute into f(x) to get:

[tex]f(g(x)) = 3( \frac{x + 2}{3}) - 2 \\f(g(x)) = x + 2- 2 \\ f(g(x)) = x[/tex]

Also,

[tex]g(f(x)) = g(3x - 2) \\ g(f(x)) = \frac{3x - 2 + 2}{3} \\ g(f(x)) = \frac{3x}{3} \\ g(f(x)) = x[/tex]

2) Since the composition of the two functions:

[tex]f(g(x)) = g(f(x)) = x[/tex]

f(x) and g(x) are inverses of each other.