A uniform disk with mass 38.7 kg and radius 0.240 m is pivoted at its center about a horizontal, frictionless axle that is stationary. The disk is initially at rest, and then a constant force 30.0 N is applied tangent to the rim of the disk.What is the magnitude v of the tangential velocity of a point on the rim of the disk after the disk has turned through 0.320 revolution?

Respuesta :

Answer:

[tex]\omega_f=5.097\ rad.s^{-1}[/tex]

Explanation:

Given:

  • mass of uniform disk, [tex]m=38.7\ kg[/tex]
  • radius of the disk, [tex]r=0.24\ m[/tex]
  • initial velocity of the disk, [tex]\omega_i=0\ rad,s^{-1}[/tex]
  • magnitude of the force acted upon the rim of the disk, [tex]F=30\ N[/tex]
  • angular displacement of the disk, [tex]\theta=0.32\times 2\pi=2.011\ rad[/tex]

Moment of inertia of the given disk:

[tex]I=\frac{1}{2}\times m.r^2[/tex]

[tex]I=0.5\times 38.7\times 0.24^2[/tex]

[tex]I=1.11456\ kg.m^2[/tex]

Also the torque due to the force is given as:

[tex]\tau=F\times r[/tex]

[tex]\tau=30\times 0.24[/tex]

[tex]\tau=7.2\ N.m[/tex]

Torque in terms of angular acceleration:

[tex]\tau=I.\alpha[/tex]

[tex]\alpha=\frac{\tau}{I}[/tex]

where:

[tex]\alpha=[/tex] angular acceleration

[tex]\alpha=\frac{7.2}{1.11456}[/tex]

[tex]\alpha=6.4599\ rad.s^{-2}[/tex]

Now using the equation of motion:

[tex]\omega_f^2=\omega_i^2+2\times \alpha.\theta[/tex]

[tex]\omega_f^2=0+2\times 6.4599\times 2.011[/tex]

[tex]\omega_f=5.097\ rad.s^{-1}[/tex]