Suppose that the useful life of a particular car battery, measured in months, decays with parameter 0.025. We are interested in the life of the battery. Find the probability that a car battery lasts more than 36 months.

Respuesta :

Answer:

The probability that a car battery lasts more than 36 months is 0.4066.

Step-by-step explanation:

Let X = the useful life of a particular car battery.

The decay parameter is, λ = 0.025.

The random variable X follows an Exponential distribution with parameter λ = 0.025.

The probability density function of X is:

[tex]f(x)=0.025e^{-0.025x};\ x>0[/tex]

Compute the probability that a car battery lasts more than 36 months as follows:

[tex]P(X>36)=\int\limits^{\infty}_{36} {0.025e^{-0.025x}} \, dx[/tex]

                [tex]=0.025\int\limits^{\infty}_{36} {e^{-0.025x}} \, dx[/tex]

                [tex]=0.025 |\frac{e^{-0.025x}}{-0.025}|^{\infty}_{36}\\[/tex]

                [tex]=|-e^{-0.025x}|^{\infty}_{36}\\[/tex]

                [tex]=|-0+e^{-0.02536}|^{\infty}_{36}\\[/tex]

                [tex]=|-0+e^{-0.02536}|^{\infty}_{36}\\=0.4066[/tex]

Thus, the probability that a car battery lasts more than 36 months is 0.4066.