Answer:
5048.78kg
Explanation:
Given [tex]m_1=2.3\times10^4kg[/tex] and [tex]E_l=0.18K[/tex], From the law of conservation of momentum we have:
[tex]m_1v_1=(m_1+m_2)v[/tex]
Hence,[tex]v=\frac{m_1v_2}{m_1+m_2}[/tex]
Since 18% of initial [tex]KE[/tex] is lost:-
[tex]K_f=\frac{0.82}{2}m_1v_1^2=0.5(m_1+m_2)v^2[/tex]
Therefore, by substituting with [tex]v[/tex]:
[tex]K_f=\frac{0.82}{2}m_1v_1^2=0.5\frac{m_1^2v_1^2}{m_1+m_2}\\\\0.82=\frac{m_1}{m_1+m_2}[/tex]
[tex]m_2+23000=23000/0.82\\m_2=5048.78kg[/tex]
The mass of the caboose is 5048.78kg