Answer: The value of [tex]K_c[/tex] is 0.0057
Explanation:
Initial moles of [tex]SO_3[/tex] = 0.900 mole
Volume of container = 2.00 L
Initial concentration of [tex]SO_3=\frac{moles}{volume}=\frac{0.900moles}{2.00L}=0.450M[/tex]
equilibrium concentration of [tex]O_2=\frac{moles}{volume}=\frac{0.110mole}{2.00L}=0.055M[/tex] [/tex]
The given balanced equilibrium reaction is,
[tex]2SO_3(g)\rightleftharpoons 2SO_2(g)+O_2(g)[/tex]
Initial conc. 0.450 M 0 0
At eqm. conc. (0.450 -2x) M (2x) M (x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[O_2][SO_2]^2}{[SO_3]^2}[/tex]
[tex]K_c=\frac{x\times (2x)^2}{0.450-2x)^2}[/tex]
we are given : x = 0.055
Now put all the given values in this expression, we get :
[tex]K_c=\frac{0.055\times (2\times 0.055)^2}{0.450-2\times 0.055)^2}[/tex]
[tex]K_c=0.0057[/tex]
Thus the value of the equilibrium constant is 0.0057