contestada

Holding onto a tow rope moving parallel to a frictionless ski slope, a 68.7 kg skier is pulled up the slope, which is at an angle of 6.7° with the horizontal. What is the magnitude Frope of the force on the skier from the rope when (a) the magnitude v of the skier's velocity is constant at 1.90 m/s and (b) v = 1.90 m/s as v increases at a rate of 0.150 m/s2?

Respuesta :

Answer:

a) [tex]F = 78.606\,N[/tex], b) [tex]F = 88.911\,N[/tex]

Explanation:

a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:

[tex]\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = 0\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0[/tex]

The force on the skier is:

[tex]F = m \cdot g \cdot \sin \theta[/tex]

[tex]F = (68.7\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot \sin 6.7^{\textdegree}[/tex]

[tex]F = 78.606\,N[/tex]

b) The equations of equilibrium are the following:

[tex]\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = m\cdot a\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0[/tex]

The force on the skier is:

[tex]F = m\cdot (a + g \cdot \sin \theta)[/tex]

[tex]F = (68.7\,kg)\cdot (0.150\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}\cdot \sin 6.7^{\textdegree})[/tex]

[tex]F = 88.911\,N[/tex]