Answer:
a) [tex]F = 78.606\,N[/tex], b) [tex]F = 88.911\,N[/tex]
Explanation:
a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:
[tex]\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = 0\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0[/tex]
The force on the skier is:
[tex]F = m \cdot g \cdot \sin \theta[/tex]
[tex]F = (68.7\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot \sin 6.7^{\textdegree}[/tex]
[tex]F = 78.606\,N[/tex]
b) The equations of equilibrium are the following:
[tex]\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = m\cdot a\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0[/tex]
The force on the skier is:
[tex]F = m\cdot (a + g \cdot \sin \theta)[/tex]
[tex]F = (68.7\,kg)\cdot (0.150\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}\cdot \sin 6.7^{\textdegree})[/tex]
[tex]F = 88.911\,N[/tex]