Respuesta :

[tex]\frac{x^{2}}{7}+1[/tex] is a polynomial .

Step-by-step explanation:

We have , the following expression x^2/7+1 ,i.e. [tex]\frac{x^{2}}{7}+1[/tex].

A polynomial function is a function such as a quadratic, a cubic, a quadratic, and so on, involving  only non-negative integer powers of x. Some examples are :

f(x)=3x−2 Linear polynomial (linear function)

f(x)=[tex]x^{2}-2x-1[/tex] Quadratic polynomial

f(x)=−[tex]x^{3}-2x^{2}+1[/tex]    Cubic polynomial with no quadratic term

f(x)=(x−3)2(2x−1)

A polynomial of degree n is a function of the form:

[tex]ax^{2}+bx+c[/tex] for a quadratic polynomial , here equation :

⇒[tex]\frac{x^{2}}{7}+1[/tex]

⇒[tex]\frac{1}{7}x^{2}+ 0.x+ 1[/tex] which is equivalent to [tex]ax^{2}+bx+c[/tex].Hence, [tex]\frac{x^{2}}{7}+1[/tex] is a polynomial .