[tex]\frac{x^{2}}{7}+1[/tex] is a polynomial .
Step-by-step explanation:
We have , the following expression x^2/7+1 ,i.e. [tex]\frac{x^{2}}{7}+1[/tex].
A polynomial function is a function such as a quadratic, a cubic, a quadratic, and so on, involving only non-negative integer powers of x. Some examples are :
f(x)=3x−2 Linear polynomial (linear function)
f(x)=[tex]x^{2}-2x-1[/tex] Quadratic polynomial
f(x)=−[tex]x^{3}-2x^{2}+1[/tex] Cubic polynomial with no quadratic term
f(x)=(x−3)2(2x−1)
A polynomial of degree n is a function of the form:
[tex]ax^{2}+bx+c[/tex] for a quadratic polynomial , here equation :
⇒[tex]\frac{x^{2}}{7}+1[/tex]
⇒[tex]\frac{1}{7}x^{2}+ 0.x+ 1[/tex] which is equivalent to [tex]ax^{2}+bx+c[/tex].Hence, [tex]\frac{x^{2}}{7}+1[/tex] is a polynomial .