izzy386
contestada

Factor completely 81x8 − 1. (9x4 − 1)(9x4 + 1) (3x2 − 1)(3x2 + 1)(9x4 − 1) (3x2 − 1)(3x2 + 1)(9x4 + 1) (3x2 − 1)(3x2 + 1)(3x2 + 1)(3x2 + 1)

Respuesta :

Answer:

(3x^2 - 1)(3x^2 + 1)(9x^4 + 1).

Step-by-step explanation:

Using the identity for the difference of 2 squares;

a^2 - b^2 = (a - b)(a + b)  

we put a^2 = 81x^8 and b^2 = 1  giving

a = 9x^4 and b = 1, so:

81x^8 − 1 =   (9x^4 - 1)(9x^4 + 1)

Applying the difference of 2 squares to 9x^4 - 1:

= (3x^2 - 1)(3x^2 + 1)(9x^4 + 1).

The required factor for [tex]81x^8 -1.[/tex] is [tex](3x^2 -1)(3x^2 + 1)(9x^4 + 1)[/tex].


To Factorize [tex]81x^8 -1[/tex].


What are the factors?

factors can be defined splitting the value into multipliable values.

To Factorize [tex]81x^8 -1[/tex]
[tex]=(9x4)^2-1[/tex]
Now using identity [tex]a^2-b^2=(a+b)(a-b)[/tex]
here [tex]a = 9x^4, b =1[/tex]
[tex]=(9x4)^2-1\\=(9x^4-1)(9x^4+1)\\=[(3x^2)^2-1](9x^4+1)\\[/tex]
One more time  using identity [tex]a^2-b^2=(a+b)(a-b)[/tex]
Where a = 3x² and b = 1
[tex]=[(3x^2)^2-1](9x^4+1)\\=(3x^2-1)(3x^2+1)(9x^4+1)[/tex]
Required factors of  [tex]81x^8 -1[/tex] is [tex](3x^2 -1)(3x^2 + 1)(9x^4 + 1)[/tex]

Thus, the required factor for [tex]81x^8 -1.[/tex] is [tex](3x^2 -1)(3x^2 + 1)(9x^4 + 1)[/tex].

Learn more about factors here:
https://brainly.com/question/24182713

#SPJ2