Consider the points below. P(−1, 3, 1), Q(0, 7, 2), R(4, 2, −1) (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R. <−1,−5,21> (b) Find the area of the triangle PQR.

Respuesta :

Answer:

(a)Therefore the nonzero vector orthogonal to the plane through the points P,Q and R is [tex]-7 \hat i+7\hat j -21\hat k[/tex]

(b)Therefore the area of the triangle is [tex]7\sqrt{11}[/tex]square units.

Step-by-step explanation:(

(a)

Given points are P(-1,3,1) , Q(0,7,2) and R(4,2,-1)

[tex]\overrightarrow{PQ} =\vec{Q}- \vec{P}[/tex]

      [tex]=(0+1)\hat {i}+(7-3)\hat {j}+(2-1)\hat{k}[/tex]

      [tex]= \hat{i}+4\hat{j}+\hat{k}[/tex]

[tex]\overrightarrow {PR} = \vec{R}- \vec{P}[/tex]

      [tex]=(4+1)\hat{i}+(2-3)\hat {j}+(-1-1)\hat {k}[/tex]

      [tex]=5\hat i- \hat j-2\hat k[/tex]

The orthogonal vector is

[tex]\overrightarrow{PQ}\times \overrightarrow{QR}[/tex]

[tex]=\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\1&4&1\\5&-1&-2\end{array}\right][/tex]

[tex]=(-8+1)\hat i+(5+2) \hat j +(-1-20)\hat k[/tex]

[tex]=-7 \hat i+7\hat j -21\hat k[/tex]

Therefore the nonzero vector orthogonal to the plane through the points P,Q and R is [tex]-7 \hat i+7\hat j -21\hat k[/tex]

(b)

The area of the triangle with the vertices P,Q and R is the half of the length of the cross product of [tex]\overrightarrow{PQ}[/tex] and [tex]\overrightarrow {PR}[/tex].

[tex]\therefore Area = \frac{1}{2} |\overrightarrow{PQ}\times \overrightarrow{PR}|[/tex]

          [tex]=\frac{1}{2} \sqrt{(-7)^2+(7)^2+(-21)^2[/tex]

         [tex]=7\sqrt{11}[/tex] square units.

Therefore the area of the triangle is [tex]7\sqrt{11}[/tex]square units.