Tritium has a half-life of 12.3 years. When the activity of a tritium sample has decreased to 6.25% of its original value, how many years have passed

Respuesta :

Answer:

t = 49.20 years

Explanation:

Half life expression for first order kinetic is:

Half life = 12.3 years

[tex]t_{1/2}=\frac{\ln2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac{\ln2}{t_{1/2}}[/tex]

[tex]k=\frac{\ln2}{12.3}\ years^{-1}[/tex]

The rate constant, k = 0.05635 years⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given:

[tex][A_t][/tex] is 6.25 % of [tex][A_0][/tex]. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 0.0625

t = ?

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.0625=e^{-0.05635\times t}[/tex]

t = 49.20 years