Answer:
A'(3, 6)
B'(6, 6)
C'(6, -3)
D'(3, -3)
Step-by-step explanation:
To find the image of a geometric figure after a dilation centered at the origin, you just need to multiply each vertex of the geometric figure by the scale factor.
We know that the scale factor is [tex]\frac{3}{4}[/tex], so let's multiply each vertex by it:
[tex]A=(4, 8)[/tex], so
[tex]A'=\frac{3}{4} (4,8)=(\frac{3}{4} *4,\frac{3}{4} *8)=(3,6)[/tex]
[tex]B=(8,8)[/tex]
[tex]B'=(\frac{3}{4} *8,\frac{3}{4} *8)=(6,6)[/tex]
[tex]C=(8,-4)[/tex]
[tex]C'=(\frac{3}{4} *8,\frac{3}{4} *-4)=(6, -3)[/tex]
[tex]D=(4,-4)[/tex]
[tex]D'=(\frac{3}{4} *4,\frac{3}{4} *-4)=(3,-3)[/tex]
We can conclude that the vertices of the image are A'(3, 6), B'(6, 6), C'(6, -3), and D'(3, -3)