A cup of coffee with temperature 155degreesF is placed in a freezer with temperature 0degreesF. After 15 ​minutes, the temperature of the coffee is 46degreesF. Use​ Newton's Law of Cooling to find the​ coffee's temperature after 20 minutes.

Respuesta :

Answer:

= 30.67°F

 ≅ 30.70°F

Explanation:

Newton's law,

[tex]T(t) = T_{s}+(T_{0} + T_{s})e^{-kt}[/tex]

When T(t) is the final temperature

[tex]T_{s}[/tex] = Temperature of surrounding

[tex]T_{0}[/tex] = Initial temperature

[tex]t[/tex]=duration of cooling

k = constant

[tex]46 = 0+(155-0)e^{-k\times 15}46 = 155e^{-15k}[/tex]

Now take natural log on both the sides

[tex]ln(46)=ln(155e^{-15k})ln(46)=ln(155)+ln(e^{-15k})ln(46)=ln(155)=-15k\\3.8286 - 5.0434 = -15k[/tex]

k = 0.081

[tex]T(t)=0+(155-0)e^{(0.081\times 20)}[/tex]

  [tex]= 155e^{-1.62}[/tex]

  = 155 (0.1979)

 = 30.67°F

 ≅ 30.70°F

Answer:

= 30.67°F

≅ 30.70°F

Explanation: