Consider the surface defined by the equation x3 + y3 + z3 = 3xyz. Use implicit differ- ∂z entiation to find ∂x. (Note z is not actually a function of x and y here, but we can still find this partial derivative.)

Respuesta :

Answer:    

   [tex]\frac{∂z}{∂x}=\frac{(3yz-3x^{2})}{3z^{2} -3xy}[/tex]

Step-by-step explanation:

Given equation is [tex]x^{3}+y^{3}+z^{3}=3xyz[/tex] ………………(1)

we use derivative formula [tex]\frac{d}{dx}(x^{n}) = n x^{n-1}[/tex]

[tex]\frac{d}{dx}(x^{3)} = 3 x^{2}[/tex]

[tex]\frac{d}{dx}(z^{3)} = 3 z^{2}[/tex]

And also apply 'u v' formula

[tex]\frac{d}{dx}(uv}) = u\frac{d}{dx}(v)+v\frac{d}{dx}(u)[/tex]

Differentiating  equation (1) partially with respective to 'x' , we treated 'y' as constant.

[tex](3x^{2} +0+3z^{2}\frac{∂z}{∂x}) =3y(x\frac{∂z}{∂x}+z(1))[/tex]   ( here y treated as constant so the derivative of constant function is zero in addition but in multiplication the constant is keep as like 'y').

on simplification , we get

[tex](3x^{2} +0+3z^{2}\frac{∂z}{∂x}) =(3yx\frac{∂z}{∂x}+3yz)[/tex]

again simplification, we get

[tex]3z^{2}\frac{∂z}{∂x}- 3yx\frac{∂z}{∂x}=3yz-3x^{2}[/tex]

taking common '[tex]\frac{∂z}{∂x}[/tex] on left on side , we get

[tex](3z^{2}- 3yx)\frac{∂z}{∂x}=3yz-3x^{2}[/tex]

dividing '[tex](3z^{2}- 3yx)[/tex] on both sides, we get

[tex]\frac{∂z}{∂x}=\frac{(3yz-3x^{2})}{3z^{2} -3xy}[/tex]

Final answer:-

[tex]\frac{∂z}{∂x}=\frac{(3yz-3x^{2})}{3z^{2} -3xy}[/tex]