Given-
Power, P = 800W
Thickness, L = 0.6cm
Area, A = 160cm²
Thermal conductivity, k = 60W/mK
The heat conduction would be
[tex]\frac{d^2T}{dx^2} + \frac{d^2T}{dy^2} + \frac{d^2T}{dz^2} + \frac{e(gen)}{k} = \frac{1}{\alpha } \frac{dT}{dt}[/tex]
Except [tex]\frac{d^2T}{dx^2}[/tex] all the values are 0.
Therefore,
[tex]\frac{d^2T}{dx^2} = 0[/tex]
Thus, the boundary conditions here would be
1. [tex]Q_x_=_0 = -kA \frac{dT (0)}{dx} = Q_o[/tex]
2. [tex]T(L) = T_L[/tex]