Answer:
[tex]1.02858429*10^{24}[/tex] defects/m³
Explanation:
Let's first determine the number of lattice sites per cubic meter; and which can be denoted as:
[tex]N = \frac{N_{A} \rho}{A_{zn}+A_o}[/tex]
[tex]N= \frac{6.022*10^{23}*5.55(10^6cm^3/m^3)}{(65.41/mol+16.00g/mol)}[/tex]
[tex]N = 4.11*10^{28}[/tex] lattice sites/m³
Now, to Calculate the number of Frenkel defects per cubic meter in zinc oxide at 904˚C, we have:
[tex]N_{fr}=Nexp(\frac{-Q_{fr}}{2KT})[/tex]
[tex]N_{fr}=4.11*10^{28}exp(\frac{-2.15eV}{2*8.62*10^{-5}eV*(904+273)K} )[/tex]
[tex]N_{fr}=4.11*10^{28}exp(-10.59558002)[/tex]
[tex]N_{fr}=4.11*10^{28}*2.50263818*10^{-5}[/tex]
[tex]N_{fr}=1.02858429*10^{24}[/tex] defects/m³
Hence, the number of Frenkel defects per cubic meter in zinc oxide at 904˚C = [tex]1.02858429*10^{24}[/tex] defects/m³