Zuuroh
contestada

(50 points) What is the 5th term in the expansion of [tex](2x^{2}y^{3} - \frac{1}{4}y)^{9}[/tex]

Drag a value into each box to correctly express the term. Apply the convention of a leading numerical coefficient and variables listed in alphabetical order.
(image below includes the options, 50 points for the complexity of the question.)

50 points What is the 5th term in the expansion of tex2x2y3 frac14y9tex Drag a value into each box to correctly express the term Apply the convention of a leadi class=

Respuesta :

The 5th term in the expansion is [tex]15.75x^{10}y^{19}[/tex]

Explanation:

The expression is [tex](2x^2y^3-\frac{1}{4})^9[/tex]

We need to determine the 5th term of the expansion.

The expression can be expanded using the binomial theorem.

Hence, we have,

[tex](2x^2y^3-\frac{1}{4})^9=9C0 (2x^{2} y^3)^{9-0}(-\frac{1}{4}y)^0+ 9C1 (2x^{2} y^3)^{9-1}(-\frac{1}{4}y)^1+ 9C2 (2x^{2} y^3)^{9-2}(-\frac{1}{4}y)^2+ 9C3 (2x^{2} y^3)^{9-3}(-\frac{1}{4}y)^3+ 9C4 (2x^{2} y^3)^{9-4}(-\frac{1}{4}y)^4+ 9C5 (2x^{2} y^3)^{9-5}(-\frac{1}{4}y)^5+ 9C6 (2x^{2} y^3)^{9-6}(-\frac{1}{4}y)^6+ 9C7 (2x^{2} y^3)^{9-7}(-\frac{1}{4}y)^7+ 9C8 (2x^{2} y^3)^{9-8}(-\frac{1}{4}y)^8+ 9C9 (2x^{2} y^3)^{9-9}(-\frac{1}{4}y)^9[/tex]The 5th term in the binomial expansion is [tex]9C4 (2x^{2} y^3)^{9-4}(-\frac{1}{4}y)^4[/tex]

Now, we shall simplify the expansion.

Thus, we have,

[tex]126 (2x^{2} y^3)^{5}(-\frac{1}{4}y)^4[/tex]

Multiplying the power, we get,

[tex]126 (32x^{10} y^{15})(\frac{1}{256}y^4)[/tex]

Simplifying the powers, we have,

[tex]\frac{4032x^{10}y^{19}}{256}[/tex]

Dividing, we get,

[tex]15.75x^{10}y^{19}[/tex]

Thus, the 5th term in the expansion is [tex]15.75x^{10}y^{19}[/tex]