Respuesta :

Answer:

-4

Step-by-step explanation:

symbolab.com baybee thats whats up

Answer:

The value of a is -4

Step-by-step explanation:

[tex](\frac{1}{9}) ^{a+1}[/tex] =  [tex]81^{a+1}[/tex]  ×  [tex]27^{2-a}[/tex]  ------------------------------------(1)

No solve this, we need to take note that 9 = 3² , 81 = [tex]3^{4}[/tex]     and 27 = [tex]3^{3}[/tex]

Now, we are going to replace 9 , 81 and 27 by  3²,  [tex]3^{4}[/tex]  and [tex]3^{3}[/tex] respectively in equation(1)

[tex](\frac{1}{3^{2} }) ^{a+1}[/tex]  =   [tex](3^{4}) ^{a+1}[/tex]  ×   [tex](3^{3} )^{2-a}[/tex]   ------------------------------(2)

also [tex]\frac{1}{3^{2} }[/tex]  =  [tex]3^{-2}[/tex]  

we are going to replace  [tex]\frac{1}{3^{2} }[/tex]   by  [tex]3^{-2}[/tex]   in equation (2)

[tex](3^{-2})^{a+1}[/tex]      =   [tex](3^{4}) ^{a+1}[/tex]  ×   [tex](3^{3} )^{2-a}[/tex]

We can now open the parenthesis

[tex]3^{-2a-2}[/tex]  =  [tex]3^{4a + 4}[/tex]  ×  [tex]3^{6-3a}[/tex]

At the right-hand side of the equation, we will apply the law of indices that state  [tex]x^{a}[/tex] × [tex]x^{b}[/tex]  =  [tex]x^{a+b}[/tex]  

This implies we will take just 3 and then add-up all the powers

[tex]3^{-2a-2}[/tex]  = [tex]3^{4a + 4+ 6-3a}[/tex]

The 3 on the left-hand side will cancel-out the 3 on the right-hand side leaving us with just the powers

-2a - 2 = 4a + 4 + 6 - 3a

-2a - 2 = 4a + 10 - 3a

collect like-term

Which means we will take all the digits with variable to the left-hand side and then take all the digits standing alone to the right-hand side of the equation

-2a - 4a + 3a = 10 + 2

-6a + 3a = 12

-3a = 12

Divide both-side of the equation by -3

[tex]\frac{-3a}{-3}[/tex] = [tex]\frac{12}{-3}[/tex]

a = -4

Therefore, the value of a is -4