In an aqueous solution of a certain acid the acid is 0.10% dissociated and the pH is 4.06. Calculate the acid dissociation constant Ka of the acid. Round your answer to 2 significant digits

Respuesta :

Answer : The acid dissociation constant Ka of the acid is, [tex]8.7\times 10^{-5}[/tex]

Explanation :

First we have to calculate the concentration of hydrogen ion.

[tex]pH=-\log [H^+][/tex]

Given: pH = 4.06

[tex]4.06=-\log [H^+][/tex]

[tex][H^+]=8.71\times 10^{-5}M[/tex]

The dissociation of acid reaction is:

                         [tex]HA\rightarrow H^++A^-[/tex]

Initial conc.      c        0         0

At eqm.           c-cα    cα       cα

Given:

Degree of dissociation = α = 0.10 % = 0.001

[tex][H^+]=c\alpha[/tex]

[tex]8.71\times 10^{-5}=c\times 0.001[/tex]

[tex]c=0.0871M[/tex]

The expression of dissociation constant of acid is:

[tex]K_a=\frac{[H^+][A^-]}{[HA]}[/tex]

[tex]K_a=\frac{(c\times \alpha)\times (c\times \alpha)}{(c-c\alpha)}[/tex]

Now put all the given values in this expression, we get:

[tex]K_a=\frac{(0.0871\times 0.001)\times (0.0871\times 0.001)}{(0.0871-0.0871\times 0.001)}[/tex]

[tex]K_a=8.7\times 10^{-5}[/tex]

Thus, the acid dissociation constant Ka of the acid is, [tex]8.7\times 10^{-5}[/tex]