There is a cylindrical shape sweet potato with an initial uniform temperature of 25°C and it has an average diameter of 70 mm and length of 150 mm. Thermal conductivity and diffusivity of the sweet potato are 0.62 W/m · °C and 0.2 x 10-6 m2/s, respectively. It is to be cooled by refrigerated air at 1.8°C. The average heat transfer coefficient between the potato and the air is 25 W/m2 · °C. Determine how long it will take for the center temperature of the potato to drop to 5.5°C.

Respuesta :

Explanation:

The given data is as follows.

    [tex]T_{o} = 25^{o}C[/tex],    d = 70 mm = [tex]70 \times 10^{-3} m[/tex]

    k = 0.62 [tex]W/m^{o}C[/tex],     [tex]\alpha = 0.2 \times 10^{-6} m/sec[/tex]

    [tex]T_{\infinity} = 1.8^{o}C[/tex],    v = 4 m/sec

       h = 25 [tex]W/m^{2}^{o}C[/tex],  [tex]T_{c} = 5.5^{o}C[/tex]

First, we will calculate the value of [tex]B_{i}[/tex] as follows.

         [tex]B_{i} = \frac{h \times d}{4k}[/tex]

                    = [tex]\frac{25 \times 70 \times 10^{-3}}{4 \times 0.62}[/tex]

                    = 0.7056

Since, 0.7056 is greater than 0.1.

As,  [tex]\frac{T_{c} - T_{\infinity}}{T_{o} - T_{infinity}}[/tex] = 0.159

                = 0.16

Also here,

             [tex]\frac{\alpha T}{d^{\gamma}}[/tex] = 1.9

           [tex]\frac{0.2 \times 10^{-6} \times T}{\frac{(70 \times 10^{-3}}{4})^{\gamma}}[/tex] = 1.9

                 T = 46.18 hrs

Thus, we can conclude that it will take 46.18 hrs for the center temperature of the potato to drop to [tex]5.5^{o}C[/tex].