Answer:
17.11m
Explanation:
Weight of the block is [tex]mg=3.25\times 9.8=31.85N[/tex], [tex]g=9.8N/kg[/tex]
#Component of the weight acting normal to ramp is:
[tex]31.85Ncos \theta=31.85cos 32.5\\=26.862N[/tex]
#Component of the weight acting parallel to the ramp and against block's motion :
[tex]31.85Nsin\theta=31.85Nsin 32.5\textdegree\\=17.113N[/tex]
Force of kinetic friction parallel to ramp and against block's motion:
[tex]\mu_k=0.382\\=>0.382\times 26.862N=10.2613N\\[/tex]
[tex]F_n_e_t=10.2613+17.113=21.3743N[/tex]
We can now calculate deceleration up incline:
[tex]a=F_n_e_t/m\\=21.3743/3.25\\=6.5767m/s^2[/tex]
#The time,[tex]t[/tex], of block's motion up incline is given as:
[tex]t=V_O/a\\=15.0/6.5767\\=2.2808s[/tex]
[tex]v_a_v_g=(15+0)/2=7.5m/s\\\\d=v_a_v_g(t)=7.5\times2.2808\\=17.1058m[/tex]
The block moves 17.11m up the incline.