Respuesta :
Answer:
Minimum = 25
First quartile = 58
Second quartile = 72
Third quartile = 80
Maximum = 98
Step-by-step explanation:
We are given the following data:
25, 35, 43, 44, 47, 48, 54, 55, 56, 57, 59, 62, 63, 65, 66, 68, 69, 69, 71, 72, 72, 73, 74, 76, 77, 77, 78, 79, 80, 81, 81, 82, 83, 85, 89, 92, 93, 94, 97, 98
We have to create a box-plot and generate five number summary.
The attached image shows the box plot and data summary:
Maximum value = 98
Minimum value = 25
[tex]Median:\\\text{If n is odd, then}\\\\Median = \displaystyle\frac{n+1}{2}th ~term \\\\\text{If n is even, then}\\\\Median = \displaystyle\frac{\frac{n}{2}th~term + (\frac{n}{2}+1)th~term}{2}[/tex]
[tex]Q_2 = \dfrac{20^{th}+21^{st}}{2} = \dfrac{72+72}{2} = 72[/tex]
[tex]Q_1 = \dfrac{10^{th}+11^{th}}{2} = \dfrac{57+59}{2} = 58[/tex]
[tex]Q_3 = \dfrac{30^{th}+31^{st}}{2} = \dfrac{81+81}{2} = 81[/tex]
is the required five number summary.
