Construct a boxplot for the given data. Include values of the 5-number summary in all boxplots. The test scores of 40 students are listed below. 25 35 43 44 47 48 54 55 56 57 59 62 63 65 66 68 69 69 71 72 72 73 74 76 77 77 78 79 80 81 81 82 83 85 89 92 93 94 97 98

Respuesta :

Answer:

Minimum = 25

First quartile = 58

Second quartile = 72

Third quartile = 80

Maximum = 98

Step-by-step explanation:

We are given the following data:

25, 35, 43, 44, 47, 48, 54, 55, 56, 57, 59, 62, 63, 65, 66, 68, 69, 69, 71, 72, 72, 73, 74, 76, 77, 77, 78, 79, 80, 81, 81, 82, 83, 85, 89, 92, 93, 94, 97, 98

We have to create a box-plot and generate five number summary.

The attached image shows the box plot and data summary:

Maximum value = 98

Minimum value = 25

[tex]Median:\\\text{If n is odd, then}\\\\Median = \displaystyle\frac{n+1}{2}th ~term \\\\\text{If n is even, then}\\\\Median = \displaystyle\frac{\frac{n}{2}th~term + (\frac{n}{2}+1)th~term}{2}[/tex]

[tex]Q_2 = \dfrac{20^{th}+21^{st}}{2} = \dfrac{72+72}{2} = 72[/tex]

[tex]Q_1 = \dfrac{10^{th}+11^{th}}{2} = \dfrac{57+59}{2} = 58[/tex]

[tex]Q_3 = \dfrac{30^{th}+31^{st}}{2} = \dfrac{81+81}{2} = 81[/tex]

is the required five number summary.

Ver imagen ChiKesselman