Answer:
Therefore,
Current produce is
[tex]i=4.61\times 10^{9}\ Ampere[/tex]
Explanation:
Given:
Magnetic dipole moment of Earth,
[tex]\mu=8\times 10^{22}\ J/T[/tex]
Radius = r = 2350 km = 2.35 × 10⁶ m
To Find:
Current, i =?
Solution:
Magnetic Dipole Moment:
A magnetic moment is a quantity that represents the magnetic strength and orientation of a magnet or any other object that produces a magnetic field.
Magnetic dipole moments have dimensions of current times area.
It is given by,
[tex]\mu=i\times Area[/tex]
Where,
[tex]\mu[/tex] = Magnetic dipole moments
i = Current
A = area = [tex]\pr r^{2}[/tex]
Substituting the values we get
[tex]i=\dfrac{\mu}{\pi r^{2}}=\dfrac{8\times 10^{22}}{3.14\times (2.35\times 10^{6})^{2}}[/tex]
[tex]i=\dfrac{8\times 10^{22}}{17.34\times 10^{12}}=4.61\times 10^{9}\ Ampere[/tex]
Therefore,
Current produce is
[tex]i=4.61\times 10^{9}\ Ampere[/tex]